Aufgrund der hohen Anzahl an Literaturhinweisen in dem in Ausgabe 07/2023 erschienenen Artikel "Wieder kraftvoll zubeißen" finden Sie das zugehörige Quellenverzeichnis nicht wie üblich im Print-Heft, sondern hier auf unserer Website. Bitte beachten Sie, dass diese Meldung nur zu informativen Zwecken dient und in direkter Verbindung mit dem erwähnten Artikel zu verstehen ist.
Literaturhinweise
[1] Dental Implants Market to 2027 - Global Analysis and Forecasts by Product; Material; End User and Geography 2019.
[2] Albrktsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European Spine Journal 2001;10.
[3] Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155–170.
[4] Zarb G, Albrektsson T. Osseointegration: A requiem for the periodontal ligament? The International Journal of Peridontics and Restorative Dentistry 1991;11:81–91.
[5] Wennerberg A, Albrektsson T, Lausmaa J. Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25‐ and 75‐μm‐sized particles of Al2O3. Journal of Biomedical Materials Research 1996;30:251–260.
[6] Ivanoff CJ, Widmark G, Johansson C, Wennerberg A. Histologic Evaluation of Bone Response to Oxidized and Turned Titanium Micro-implants in Human Jawbone. The International Journal of Oral & Maxillofacial Implants 2003;18:341–348.
[7] Duan K, Wang R. Surface modifications of bone implants through wet chemistry. J. Mater. Chem. 2006;16:2309–2321.
[8] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealy PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999;20:573–588.
[9] Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clinical Oral Implants Research 1995;6:24–30.
[10] Li D, Ferguson SJ, Beutler T, Cochran DL, Sittig C, Hirt HP et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. Journal of Biomedical Materials Research 2002;60:325–332.
[11] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science 2009;54:397–425.
[12] Gaviria L, Salcido JP, Guda T, Ong JL. Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg 2014;40:50–60.
[13] Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering 1998;A243:231–236.
[14] Pohler OE. Unalloyed titanium for implants in bone surgery. Injury 2000;31:7–13.
[15] Olivares-Navarrete R, Hyzy SL, Hutton DL, Erdman CP, Wieland M, Boyan BD et al. Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials 2010;31:2728–2735.
[16] Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface Modifications and Their Effects on Titanium Dental Implants. BioMed Research International 2015:1–11.
[17] Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford Jr. J et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast‐like cells (MG63). Journal of Biomedical Materials Research 1995;29:389–401.
[18] Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19:2219–2232.
[19] Groessner-Schreiber B, Tuan RS. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. Journal of Cell Science 1992;101:209–217.
[20] Chang HI, Wang Y. Regenerative Medicine and Tissue Engineering - Cells and Biomaterials: Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds:569–588.
[21] Alberti CJ, Saito E, Freitas FEd, Reis DAP, Machado JPB, Reis AGd. Effect of Etching Temperature on Surface Properties of Ti6Al4V Alloy for Use in Biomedical Applications. Mat. Res. 2019;22:7.
[22] Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH et al. Roughness response genes in osteoblasts. Bone 2004;35:124–133.
[23] Wennerberg A, Hallgreen C, Johansson C, Danelli S. A histomorphometric evaluation of screw‐shaped implants each prepared with two surface roughnesses. Clinical Oral Implants Research 1998;9:11–19.
[24] Schwartz Z, Raines AL, Boyan BD. The Effect of Substrate Microtopography on Osseointegration of Titanium Implants. Comprehensive Biomaterials 2011;6:343–352.
[25] Z. Orthop. 135 (1997), 505-508. Zeitschrift für Orthopädie und Unfallchirugie 1997;135:505–508.
[26] Zwahr C, Welle A, Weingärtner T, Heinemann C, Kruppke B, Gulow N et al. Ultrashort Pulsed Laser Surface Patterning of Titanium to Improve Osseointegration of Dental Implants. Adv. Eng. Mater. 2019;21:1900639.
[27] Hasegawa M, Saruta J, Hirota M, Taniyama T, Sugita Y, Kubo K et al. A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration. Int J Mol Sci 2020;21:1–17.
[28] Burgos PM, Rasmusson L, Meirelles L, Sennerby L. Early bone tissue responses to turned and oxidized implants in the rabbit tibia. Clin Implant Dent Relat Res 2008;10:181–190.
[29] Mendes VC, Moineddin R, Davies JE. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. Biomaterials 2007;28:4748–4755.
[30] Mendes VC, Moineddin R, Davies JE. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. J Biomed Mater Res A 2009;90:577–585.
[31] Sykaras N, Lacopino AM, Marker VA, Triplett RG, Woody RD. Implant Materials, Designs, and Surface Topographies: Their Effect on Osseointegration. A Literature Review. The International Journal of Oral & Maxillofacial Implants 2000;15:675–690.
[32] Saruta J, Sato N, Ishijima M, Okubo T, Hirota M, Ogawa T. Disproportionate Effect of Sub-Micron Topography on Osteoconductive Capability of Titanium. Int J Mol Sci 2019;20(16):1–15.
[33] Iwaya Y, Machigashira M, Kanbara K, Miyamoto M, Noguchi K, Izumi Y et al. Surface Properties and Biocompatibility of Acid-etched Titanium. Dental Materials Journal 2008;27:415–421.
[34] Iwasaki C, Hirota M, Tanaka M, Kitajima H, Tabuchi M, Ishijima M et al. Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function. Int J Mol Sci 2020;21.
[35] Siddiqui DA, Jacob JJ, Fidai AB, Rodrigues DC. Biological characterization of surface-treated dental implant materials in contact with mammalian host and bacterial cells: titanium versus zirconia. RSC Adv. 2019;9:32097–32109.
[36] Alencar MASDS, Martinez EF, Figueiredo FC, Lima e Silva ARD, Protazio JE, Bertamoni M et al. The Evaluation of Osteoblastic Cell Behavior on Treated Titanium Surface. TODENTJ 2020;14:1–6.
[37] Juodzbalys G, Sapragoniene M, Wennerberg A. New Acid Etched Titanium Dental Implant Surface. Stomatologija, Baltic Dental and Maxillofacial Journal 2003;5:101–105.
[38] Yi J-H, Bernard C, Variola F, Zalzal SF, Wuest JD, Rosei F et al. Characterization of a bioactive nanotextured surface created by controlled chemical oxidation of titanium. Surface Science 2006;600:4613–4621.
[39] Oliveira PT de, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 2004;25:403–413.
[40] Oliveira PT de, Zalzal SF, Beloti MM, Rosa AL, Nanci A. Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res A 2007;80:554–564.
[41] Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S., McKee MD. Chemical modification of titanium surfaces for covalent attachment of biological molecules. Journal of Biomedical Materials Research 1998;40:324–335.
[42] Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clinical Oral Implants Research 2004;15:381–392.
[43] G. Shi, L. Ren, L. Wang, H. Lin, S. Wang, Y. Tong. H2O2/HCl and heat-treated Ti-6Al-4V stimulates pre-osteoblast proliferation and differentiation.
[44] Bornstein MM, Schmid B, Belser UC, Lussi A, Buser D. Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface. 5-year results of a prospective study in partially edentulous patients. Clinical Oral Implants Research 2005;16:631–638.
[45] Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, Ramón-Torregrosa PJ, Díaz-Rodríguez L, García-Martínez O et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010;365:222–229.
[46] Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP et al. Interface shear strength of titanium implants with a sandblasted and acid‐etched surface: A biomechanical study in the maxilla of miniature pigs. Journal of Biomedical Materials Research 1999;45:75–83.
[47] Herrero-Climent M, Lázaro P, Vicente Rios J, Lluch S, Marqués M, Guillem-Martí J et al. Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies. J Mater Sci Mater Med 2013;24:2047–2055.
[48] Li S, Ni J, Liu X, Lu H, Yin S, Rong M et al. Surface Characteristic of Pure Titanium Sandblasted with Irregular Zirconia Particles and Acid-Etched. Mater. Trans. 2012;53:913–919.
[49] hung KY, Lin YC, Feng HP. The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials. Materials 2017;10:1–14.
Autor(en): wi